นภัส แก้วตระกูลชัย
นักวิจัย
ฝ่ายเทคโนโลยีชีวมวลและพลังงานชีวภาพ สถาบันค้นคว้าและพัฒนาผลิตผลทางการเกษตรและอุตสาหกรรมเกษตร บางเขน
napat.kaewt@ku.ac.th
-
EDUCATION
- ปรัชญาดุษฎีบัณฑิต สาขานาโนวิทยาเเละนาโนเทคโนโลยี, สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง, ไทย, 2563
- วิศวกรรมศาสตรมหาบัณฑิต สาขาเทคโนโลยีเเละการจัดการพลังงาน, มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี, ไทย, 2560
- วิศวกรรมศาสตรบัณฑิต สาขาวิศวกรรมวัสดุนาโน, สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง, ไทย, 2558
RESOURCE
แหล่งที่มา
ผลงาน
Works
INTEREST
ความสนใจ
Biomass technology, Catalytic deoxygenation, Porous materials, Nanomaterials and Nanotechnology, Carbon materials, Biofuels
Expertise Cloud
ความเชี่ยวชาญ
Person
Relationship
นักวิจัย
ที่มีผลงานมากที่สุด 10 คนแรก
Scopus
h-index
h-index: 9
# | Document title | Authors | Year | Source | Cited by |
---|---|---|---|---|---|
1 | Machine learning and statistical analysis for biomass torrefaction: A review | Manatura K., Chalermsinsuwan B., Kaewtrakulchai N., Kwon E.E., Chen W.H., Chen W.H., Chen W.H. | 2023 | Bioresource Technology, 369, 128504 | 42 |
2 | Palm oil conversion to bio-jet and green diesel fuels over cobalt phosphide on porous carbons derived from palm male flowers | Kaewtrakulchai N., Kaewtrakulchai N., Kaewmeesri R., Kaewmeesri R., Itthibenchapong V., Eiad-Ua A., Faungnawakij K. | 2020 | Catalysts, 10(6), pp. 1-18, 694 | 31 |
3 | Parametric study on microwave-assisted pyrolysis combined KOH activation of oil palm male flowers derived nanoporous carbons | Kaewtrakulchai N., Kaewtrakulchai N., Faungnawakij K., Eiad-Ua A. | 2020 | Materials, 13(12), 2876 | 20 |
4 | High performance nanoporous carbon from mulberry leaves (Morus alba L.) residues via microwave treatment assisted hydrothermal-carbonization for methyl orange adsorption: Kinetic, equilibrium and thermodynamic studies | Siraorarnroj S., Kaewtrakulchai N., Fuji M., Eiad-ua A. | 2022 | Materialia, 21, 101288 | 18 |
5 | Nanoporous Carbon from Oil Palm Leaves via Hydrothermal Carbonization-Combined KOH Activation for Paraquat Removal | Chanpee S., Kaewtrakulchai N., Khemasiri N., Eiad-Ua A., Assawasaengrat P. | 2022 | Molecules (Basel, Switzerland), 27(16), 5309 | 15 |
6 | Co-torrefaction of rice straw and waste medium density fiberboard: A process optimization study using response surface methodology | Manatura K., Chalermsinsuwan B., Kaewtrakulchai N., Chao Y.C., Li Y.H. | 2023 | Results in Engineering, 18, 101139 | 15 |
7 | Porous Biochar Supported Transition Metal Phosphide Catalysts for Hydrocracking of Palm Oil to Bio-Jet Fuel | Kaewtrakulchai N., Kaewtrakulchai N., Smuthkochorn A., Manatura K., Panomsuwan G., Fuji M., Eiad-Ua A. | 2022 | Materials, 15(19), 6584 | 14 |
8 | Co-hydrothermal carbonization of polystyrene waste and maize stover combined with KOH activation to develop nanoporous carbon as catalyst support for catalytic hydrotreating of palm oil | Kaewtrakulchai N., Chanpee S., Jadsadajerm S., Wongrerkdee S., Manatura K., Eiad-Ua A. | 2024 | Carbon Resources Conversion, 7(4), 100231 | 11 |
9 | Synergy of functionalized activated carbon and ZnO nanoparticles for enhancing photocatalytic degradation of methylene blue and carbaryl | Rungsawang T., Krobthong S., Paengpan K., Kaewtrakulchai N., Manatura K., Eiad-Ua A., Boonruang C., Wongrerkdee S. | 2024 | Radiation Physics and Chemistry, 111924 | 11 |
10 | Catalytic deoxygenation of palm oil over metal phosphides supported on palm fiber waste derived activated biochar for producing green diesel fuel | Kaewtrakulchai N., Kaewtrakulchai N., Fuji M., Eiad-Ua A. | 2022 | RSC Advances, 12(40), pp. 26051-26069 | 9 |
11 | Cattail leaf-derived nitrogen-doped carbons via hydrothermal ammonia treatment for electrocatalytic oxygen reduction in an alkaline electrolyte | Panomsuwan G., Eiad-ua A., Kaewtrakulchai N., Seizawa A., Ishizaki T. | 2022 | International Journal of Hydrogen Energy | 9 |
12 | Sustainable Development of ZnO Nanostructure Doping with Water Hyacinth-Derived Activated Carbon for Visible-Light Photocatalysis | Krobthong S., Rungsawang T., Khaodara N., Kaewtrakulchai N., Manatura K., Sukiam K., Wathinputthiporn D., Wongrerkdee S., Boonruang C., Wongrerkdee S. | 2024 | Toxics, 12(3), 165 | 8 |
13 | Hydrophobicity and performance analysis of beverage and agricultural waste torrefaction for high-grade bio-circular solid fuel | Kaewtrakulchai N., Wongrerkdee S., Chalermsinsuwan B., Samsalee N., Huang C.W., Manatura K. | 2024 | Carbon Resources Conversion, 100243 | 8 |
14 | Valorization of horse manure conversion to magnetic carbon nanofiber for dye adsorption by hydrothermal treatment coupled with carbonization | Kaewtrakulchai N., Chanpee S., Pasee W., Putta A., Chutipaijit S., Kaewpanha M., Suriwong T., Puengjinda P., Panomsuwan G., Fuji M., Eiad-ua A. | 2024 | Case Studies in Chemical and Environmental Engineering, 9, 100563 | 7 |
15 | Magnetic Carbon Nanofibers from Horse Manure via Hydrothermal Carbonization for Methylene Blue Adsorption | Kaewtrakulchai N., Putta A., Pasee W., Fuangnawakij K., Panomsuwan G., Eiad-Ua A. | 2019 | IOP Conference Series: Materials Science and Engineering, 540(1), 012006 | 7 |
16 | Upgrading of Corn Stalk Residue and Tannery Waste into Sustainable Solid Biofuel via Conventional Hydrothermal Carbonization and Co-Hydrothermal Carbonization | Kaewtrakulchai N., Chanpee S., Manatura K., Eiad-Ua A. | 2023 | Journal of Sustainability Research, 5(3), e230012 | 5 |
17 | Nitrogen-doped carbon derived from horse manure biomass as a catalyst for the oxygen reduction reaction | Panomsuwan G., Hussakan C., Kaewtrakulchai N., Techapiesancharoenkij R., Serizawa A., Ishizaki T., Eiad-Ua A. | 2022 | RSC Advances, 12(27), pp. 17481-17489 | 5 |
18 | Effects of transition metal during the hydrothermal carbonization on characteristics of carbon materials | Sangjumras P., Udomsap P., Udomsap P., Kaewtrakulchai N., Eiad-Ua A., Fuji M., Chutipaijit S. | 2018 | AIP Conference Proceedings, 2010, 020014 | 4 |
19 | Characterization of carbon fibers from Thai horse manure via hydrothermal carbonization | Wettayavong S., Sangnoi S., Kaewtrakulchai N., Eiad-Ua A. | 2018 | Materials Today: Proceedings, 5(5), pp. 10940-10945 | 4 |
20 | A novel photocatalyst of Y | Sujinnapram S., Krobthong S., Moungsrijun S., Boonruang C., Kaewtrakulchai N., Eiad-Ua A., Manatura K., Wongrerkdee S. | 2024 | Materials Today Communications, 40, 109501 | 4 |
21 | Torrefaction of durian peel in air and N | Pimsamarn J., Kaewtrakulchai N., Wisetsai A., Mualchontham J., Muidaeng N., Jiraphothikul P., Autthanit C., Eiad-Ua A., Laosiripojana N., Jadsadajerm S. | 2024 | Results in Engineering, 23, 102767 | 3 |
22 | Dependence of MWCNT production via co-pyrolysis of industrial slop oil and ferrocene on growth temperature and heating rate | Chaiwat W., Kaewtrakulchai N., Sangsiri P., Eiad-ua A., Wongwiriyapan W., Viriya-empikul N., Suttiponpanit K., Charinpanitkul T., Charinpanitkul T. | 2020 | Journal of Analytical and Applied Pyrolysis, 150, 104878 | 3 |
23 | Synthesis of carbon nanofiber from horse manure via hydrothermal carbonization for dye adsorption | Pasee W., Puta A., Sangnoi S., Wettayavong S., Kaewtrakulchai N., Panomsuwan G., Eiad-Ua A. | 2019 | Materials Today: Proceedings, 17, pp. 1326-1331 | 3 |
24 | Influence of hydrothermal and calcination process on metakaolin from natural clay | Srilai S., Kaewtrakulchai N., Panomsuwan G., Fuji M., Eiad-Ua A. | 2018 | AIP Conference Proceedings, 2010, 020018 | 3 |
25 | Nanoporous carbon from Cattial leaves for carbon dioxide capture | Smuthkochorn A., Katunyoo N., Kaewtrakulchai N., Atong D., Soongprasit K., Eiad-Ua A. | 2019 | Materials Today: Proceedings, 17, pp. 1240-1248 | 3 |
26 | Characterization of activated biochar prepared from pineapple waste for metal catalyst support | Kaewtrakulchai N., Rousset P., Eiad-Ua A. | 2019 | Suranaree Journal of Science and Technology, 26(1), pp. 23-30 | 2 |
27 | Synthesis of porous carbon materials from water hyacinth via hydrothermal carbonization assisted chemical activation for carbon-based electrode applications | Liamprawat T., Verasarut P., Kaewtrakulchai N., Panomsuwan G., Chutipaijit S., Puengjinda P., Fuji M., Eiad-Ua A. | 2020 | AIP Conference Proceedings, 2279, 130004 | 2 |
28 | Cattail (Typha angustifolia) flower-derived porous carbons as support of electroplated Ni and Cu catalysts for hydrogenation of methyl levulinate to ?-valerolactone | Kaewtrakulchai N., Kaewtrakulchai N., Gunpum W., Fuji M., Eiad-Ua A. | 2021 | Biomass Conversion and Biorefinery | 2 |
29 | Bimetallic PdNi catalyst on cattail Leaves-Derived nanoporous carbon support for synthesis of partially hydrogenated fatty acid methyl ester (H-FAME) | Longprang T., Kaewtrakulchai N., Kiatkittipong W., Srifa A., Chollacoop N., Eiad-Ua A., Assabumrungrat S. | 2024 | Arabian Journal of Chemistry, 17(6), 105800 | 2 |
30 | Corrigendum to “A novel photocatalyst of Y | Sujinnapram S., Krobthong S., Moungsrijun S., Boonruang C., Kaewtrakulchai N., Eiad-Ua A., Manatura K., Wongrerkdee S. | 2024 | Materials Today Communications, 109666 | 2 |
31 | Parametric study on mechanical-press torrefaction of palm oil empty fruit bunch for production of biochar | Kaewtrakulchai N., Wisetsai A., Phongaksorn M., Thipydet C., Jongsomjit B., Laosiripojana N., Worasuwannarak N., Pimsamarn J., Jadsadajerm S. | 2024 | Carbon Resources Conversion, 100285 | 2 |
32 | Optimization of torrefaction parameters for coconut shell using Taguchi method: Impact on torrefaction performances, combustion characteristics, and thermal stability | Manatura K., Samsalee N., Kaewtrakulchai N., Jadsadajerm S., Muangklang E., Jaruwongwittaya T., Huang C.W. | 2025 | Thermal Science and Engineering Progress, 57, 103137 | 1 |
33 | Solid shrimp waste derived nanoporous carbon as an alternative bio-sorbent for oxytetracycline removal from aquaculture wastewater | Kaewtrakulchai N., Samattakarn N., Chanpee S., Assawasaengrat P., Manatura K., Wongrerkdee S., Eiad-Ua A. | 2024 | Heliyon, 10(11), e32427 | 1 |
34 | Catalytic Deoxygenation of Palm Oil Over Iron Phosphide Supported on Nanoporous Carbon Derived from Vinasse Waste for Green Diesel Production | Nenyoo P., Wongsurakul P., Kiatkittipong W., Kaewtrakulchai N., Srifa A., Eiad-Ua A., Assabumrungrat S. | 2024 | ACS Omega | 1 |
35 | Preparation of Activated Carbon from Various Biomasses by Single-Stage Pyrolysis | Thowphan S., Kaewtrakulchai N., Jaruvanawat A., Chutipaijit S., Puengjinda P., Chollacoop N., Fuji M., Eiad-Ua A. | 2022 | Journal of Physics: Conference Series, 2175(1), 012009 | 1 |
36 | Synthesis of nanoporous material from lignin via carbonization assisted acid activation | Ngamthanacom N., Kaewtrakulchai N., Chaiwat W., Chuenchom L., Fuji M., Eiad-Ua A. | 2020 | Materials Science Forum, 990 MSF, pp. 149-154 | 1 |
37 | Alternate catalyst support from microwave-assisted activation of coconut tree fiber | Kaewtrakulchai N., Faungnawakij K., Eiad-Ua A. | 2020 | Key Engineering Materials, 853 KEM, pp. 223-227 | 1 |
38 | Highly porous carbon materials for adsorbent from water hyacinth via hydrothermal carbonization | Chanpee S., Suksai N., Kaewtrakulchai N., Chutipaijit S., Fuji M., Eiad-Ua A. | 2020 | AIP Conference Proceedings, 2279, 130003 | 1 |
39 | N-doped Porous Carbon from Palm Male Flower via Hydrothermal Carbonization | Verasarut P., Liamprawat T., Kaewtrakulchai N., Chutipaijit S., Panomsuwan G., Puengjinda P., Fuji M., Eiad-Ua A. | 2020 | IOP Conference Series: Materials Science and Engineering, 894(1), 012008 | 1 |
40 | Horse manure derived nitrogen-doped porous carbon via hydrothermal carbonization for promising applications | Liamprawat T., Verasarut P., Kaewtrakulchai N., Panomsuwan G., Fuji M., Eiad-Ua A. | 2020 | Materials Science Forum, 990 MSF, pp. 155-160 | 0 |
41 | Influence of chemical activation on synthesis of carbon nanoparticles via carbonization from lignin | Ngamthanacom N., Kaewtrakulchai N., Chaiwat W., Chuenchom L., Fuji M., Eiad-Ua A. | 2020 | AIP Conference Proceedings, 2279, 030003 | 0 |
42 | Influence of hydrothermal-carbonization process on biochar properties from cattail weed waste | Smuthkochorn A., Katunyoo N., Kaewtrakulchai N., Atong D., Soongprasit K., Fuji M., Eiad-Ua A. | 2019 | Current Applied Science and Technology, 19(1), pp. 9-17 | 0 |
43 | Influence of acid-treatment on waste lignin for synthesis of carbon nanoparticles | Ngamthanacom N., Kaewtrakulchai N., Chaiwat W., Chuenchom L., Fuji M., Eiad-Ua A. | 2019 | Key Engineering Materials, 824 KEM, pp. 1-7 | 0 |
44 | Nanoporous Carbon from Water Hyacinth Via Hydrothermal Carbonization | Chanpee S., Suksai N., Kaewtrakulchai N., Chutipaijit S., Fuji M., Eiad-Ua A. | 2020 | IOP Conference Series: Materials Science and Engineering, 894(1), 012007 | 0 |
45 | Nanoporous Carbon from Water Hyacinth via Hydrothermal Carbonization assisted Chemical Activation for Dye adsorption | Sukulbrahman M., Siraorarnroj S., Suksai N., Kaewtrakulchai N., Chutipaijit S., Chanpee S., Puengjinda P., Fuji M., Eiad-Ua A., Klomklao S., Jaruvanawat A. | 2022 | Current Applied Science and Technology, 22(4) | 0 |
46 | Oil palm leaf-derived nanoporous carbon via hydrothermal carbonization combined with NaOH microwave activation for tetracycline adsorption | Chanpee S., Apinyakul N., Kaewtrakulchai N., Khemasiri N., Eiad-ua A., Assawasaengrat P. | 2024 | Biomass Conversion and Biorefinery | 0 |
47 | Synthesis of nanoporous carbon from brewer waste by hydrothermal carbonization assisted chemical activation for carbamazepine adsorption | Apinyakul N., Chanpee S., Kaewtrakulchai N., Khemasiri N., Eiad-ua A., Assawasaengrat P. | 2024 | Case Studies in Chemical and Environmental Engineering, 9, 100716 | 0 |
48 | Nanoporous Carbon-Supported Bimetallic (Ni, Cu, and Fe)-Mo Catalysts for Partial Hydrogenation of Biodiesel | Jaruwat D., Kaewtrakulchai N., Siriorarnroj S., Srifa A., Kiatkittipong W., Charojrochkul S., Fuji M., Eiad-Ua A., Assabumrungrat S. | 2024 | ACS Omega | 0 |
49 | Activated Carbon Films from Water Hyacinth Waste for Stable and Sustainable Counter-Electrode Application in Dye-Sensitized Solar Cells | Kamanja R., Wongrerkdee S., Rungsawang T., Wongrerkdee S., Krobthong S., Pimpang P., Kaewtrakulchai N., Manatura K. | 2025 | Indonesian Journal of Science and Technology, 10(1), pp. 133-144 | 0 |
50 | NiO-YSZ anode composite material derived from mechano-chemical for solid oxide fuel cells application | Srisuwan T., Puengjinda P., Kaewtrakulchai N., Chanpee S., Jadsadajerm S., Panomsuwan G., Ruttanadech N., Wongrekdee S., Chollacoop N., Faungnawakij K., Fuji M., Eiad-ua A. | 2025 | Case Studies in Chemical and Environmental Engineering, 11, 101199 | 0 |