อัญชลี ศิริขจรกิจ
รองศาสตราจารย์
ภาควิชาพันธุศาสตร์ คณะวิทยาศาสตร์ บางเขน
fscialsk@ku.ac.th
-
EDUCATION
- B.A.(Biological Sciences), The University of Chicago, สหรัฐอเมริกา, 2544
- Ph.D.(Microbiology), University of California, สหรัฐอเมริกา, 2549
RESOURCE
แหล่งที่มา
ผลงาน
Works
INTEREST
ความสนใจ
Algal Molecular Genetigs, Genetic Engineering of Algae, Algal Biochemistry
Expertise Cloud
ความเชี่ยวชาญ
Person
Relationship
นักวิจัย
ที่มีผลงานมากที่สุด 10 คนแรก
Scopus
h-index
h-index: 13
# | Document title | Authors | Year | Source | Cited by |
---|---|---|---|---|---|
1 | Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat | Huang S., Huang S., Sirikhachornkit A., Su X., Faris J., Faris J., Gill B., Haselkorn R., Gornicki P. | 2002 | Proceedings of the National Academy of Sciences of the United States of America, 99(12), pp. 8133-8138 | 521 |
2 | Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses | Huang S., Sirikhachornkit A., Faris J., Faris J., Su X., Gill B., Haselkorn R., Gornicki P. | 2002 | Plant Molecular Biology, 48(5-6), pp. 805-820 | 120 |
3 | Elucidation of the molecular responses to waterlogging in Jatropha roots by transcriptome profiling | Juntawong P., Sirikhachornkit A., Pimjan R., Sonthirod C., Sangsrakru D., Yoocha T., Tangphatsornruang S., Srinives P. | 2014 | Frontiers in Plant Science, 5(DEC), 658 | 56 |
4 | The carboxyltransferase activity of the apicoplast acetyl-CoA carboxylase of Toxoplasma gondii is the target of aryloxyphenoxypropionate inhibitors | Jelenska J., Sirikhachornkit A., Haselkorn R., Gornicki P. | 2002 | Journal of Biological Chemistry, 277(26), pp. 23208-23215 | 48 |
5 | De novo transcriptome analysis and gene expression profiling of an oleaginous microalga Scenedesmus acutus TISTR8540 during nitrogen deprivation-induced lipid accumulation | Sirikhachornkit A., Suttangkakul A., Vuttipongchaikij S., Juntawong P. | 2018 | Scientific Reports, 8(1), 3668 | 46 |
6 | Expression of cytosolic and plastid acetyl-coenzyme A carboxylase genes in young wheat plants | Podkowinski J., Jelenska J., Sirikhachornkit A., Zuther E., Haselkorn R., Gornicki P. | 2003 | Plant Physiology, 131(2), pp. 763-772 | 30 |
7 | Increasing the triacylglycerol content in dunaliella tertiolecta through isolation of starch-deficient mutants | Sirikhachornkit A., Vuttipongchaikij S., Suttangkakul A., Yokthongwattana K., Juntawong P., Pokethitiyook P., Pokethitiyook P., Kangvansaichol K., Meetam M., Meetam M. | 2016 | Journal of Microbiology and Biotechnology, 26(5), pp. 854-866 | 25 |
8 | Chromosome mapping and phylogenetic analysis of the cytosolic acetyl-CoA carboxylase loci in wheat | Faris J., Sirikhachornkit A., Haselkorn R., Gill B., Gornicki P. | 2001 | Molecular Biology and Evolution, 18(9), pp. 1720-1733 | 24 |
9 | Evaluation of strategies for improving the transgene expression in an oleaginous microalga Scenedesmus acutus | Suttangkakul A., Sirikhachornkit A., Juntawong P., Puangtame W., Chomtong T., Srifa S., Sathitnaitham S., Dumrongthawatchai W., Jariyachawalid K., Vuttipongchaikij S. | 2019 | BMC Biotechnology, 19(1), 4 | 23 |
10 | Pigment production under cold stress in the green microalga chlamydomonas reinhardtii | Supakorn P., Chonlada Y., Anchalee S. | 2021 | Agriculture (Switzerland), 11(6), 564 | 21 |
11 | Replacement of ?-tocopherol by ?-tocopherol enhances resistance to photooxidative stress in a xanthophyll-deficient strain of chlamydomonas reinhardtii | Sirikhachornkit A., Shin J., Shin J., Baroli I., Baroli I., Niyogi K. | 2009 | Eukaryotic Cell, 8(11), pp. 1648-1657 | 19 |
12 | Complex nested promoters control tissue-specific expression of acetyl-CoA carboxylase genes in wheat | Zuther E., Zuther E., Huang S., Huang S., Jelenska J., Eilenberg H., Arnold E., Su X., Sirikhachornkit A., Podkowinski J., Podkowinski J., Zilberstein A., Haselkorn R., Gornicki P. | 2004 | Proceedings of the National Academy of Sciences of the United States of America, 101(5), pp. 1403-1408 | 15 |
13 | Improving the co-production of triacylglycerol and isoprenoids in Chlamydomonas | Potijun S., Jaingam S., Sanevas N., Vajrodaya S., Sirikhachornkit A. | 2020 | Biofuel Research Journal, 7(4), pp. 1235-1244 | 14 |
14 | Green microalgae strain improvement for the production of sterols and squalene | Potijun S., Jaingam S., Sanevas N., Vajrodaya S., Sirikhachornkit A. | 2021 | Plants, 10(8), 1673 | 13 |
15 | Effects of high temperature on carotenoid accumulation and gene expression in the model green alga chlamydomonas reinhardtii | Napaumpaiporn P., Sirikhachornkit A. | 2016 | Chiang Mai Journal of Science, 43(3), pp. 452-460 | 8 |
16 | Characterization of chlamydomonas very high light-tolerant mutants for enhanced lipid production | Yaisamlee C., Sirikhachornkit A. | 2020 | Journal of Oleo Science, 69(4), pp. 359-368 | 5 |
17 | Palmelloid Formation and Cell Aggregation Are Essential Mechanisms for High Light Tolerance in a Natural Strain of Chlamydomonas reinhardtii | Suwannachuen N., Leetanasaksakul K., Roytrakul S., Phaonakrop N., Thaisakun S., Roongsattham P., Jantasuriyarat C., Sanevas N., Sirikhachornkit A. | 2023 | International Journal of Molecular Sciences, 24(9), 8374 | 4 |
18 | Pigment Production of Chlamydomonas Strains in Response to Norflurazon and ZnO Nanoparticles | Intha T., Sirikhachornkit A. | 2023 | Fermentation, 9(2), 193 | 2 |
19 | Environmental factors afecting the diversity and photosynthetic pigments of trentepohlia species in Northern Thailand's Chiang Dao wildlife sanctuary | Saraphol S., Vajrodaya S., Kraichak E., Sirikhachornkit A., Sanevas N. | 2020 | Acta Societatis Botanicorum Poloniae, 89(1), 8912 | 2 |
20 | An efficient method for isolating large quantity and high quality RNA from oleaginous microalgae for transcriptome sequencing | Suttangkakul A., Juntawong P., Sirikhachornkit A., Yaisumlee C., Jariyachawalid K., Kangwansaichol K., Apisitwanich S., Vuttipongchaikij S. | 2016 | Plant OMICS, 9(2), pp. 126-135 | 1 |